1. **Intended use**

The **ZytoLight SPEC IRF4,DUSP22 Dual Color Break Apart Probe** (PL168) is intended to be used for the qualitative detection of translocations involving the IRF4,DUSP22 gene region at 6p25.3 by fluorescence in situ hybridization (FISH).

Interpretation of the results must be made within the context of the patient’s clinical history with respect to further clinical and pathologic data of the patient by a qualified pathologist.

2. **Clinical relevance**

IRF4 is normally expressed in plasma cells, melanocytes, some B-cells, and in activated T-cells. The IRF4 protein is required at several stages of B-cell development, and is also critical for T-cell differentiation. Rearrangements of the IRF4/DUSP22 chromosomal region have been detected in various B-cell and T-cell lymphomas. Large B-cell lymphoma (LBCL) with IRF4 rearrangement, which occurs most commonly in children and young adults, is considered a distinct new provisional entity. These lymphomas most typically occur in Waldeyer ring and/or cervical lymph nodes. Most cases have IG/IRF4 fusions and have a favorable prognosis. Rearrangements of IRF4 and/or DUSP22 have also been described in peripheral T-cell lymphomas and in cutaneous anaplastic large cell lymphoma (ALCL). ALCL is difficult to distinguish from other CD30-positive T-cell lymphoproliferative disorders. IRF4 translocation has a high specificity for cutaneous ALCL supporting the clinical utility of FISH for IRF4 in the differential diagnosis of T-cell lymphoproliferative disorders. Moreover, DUSP22 rearrangement in ALK-negative ALCL is associated with a favorable outcome indicating the usefulness of DUSP22 as a predictive biomarker.

3. **Test principle**

The fluorescence in situ hybridization (FISH) technique allows for the detection and visualization of specific nucleic acid sequences in cell preparations. Fluorescently-labeled DNA fragments, so-called FISH probes, and their complementary target DNA strands in the preparations are co-denatured and subsequently allowed to anneal during hybridization. Afterwards, unspecific and unbound probe fragments are removed by stringency washing steps. After counterstaining the DNA with DAPI, hybridized probe fragments are visualized using a fluorescence microscope equipped with excitation and emission filters specific for the fluorochromes with which the FISH probe fragments have been directly labeled.

4. **Reagents provided**

The **ZytoLight SPEC IRF4,DUSP22 Dual Color Break Apart Probe** is composed of:

- **ZyGreen** (excitation 503 nm/emission 528 nm) labeled polynucleotides (~10 ng/µl), which target sequences mapping in 6p25.3* (chr6:557,233-940,968) proximal to the IRF4,DUSP22 gene region (see Fig. 1).
- **ZyOrange** (excitation 547 nm/emission at 572 nm) labeled polynucleotides (~4.5 ng/µl), which target sequences mapping in 6p25.3* (chr6:114,722-273,908) distal to the IRF4,DUSP22 gene region (see Fig. 1).
- Formamid based hybridization buffer

*according to Human Genome Assembly GRCh37/hg19

5. **Materials required but not provided**

- **ZytoLight FISH-Tissue Implementation Kit** (Prod. No. Z-2028-5/-20)
- **Positive and negative control specimens**
- **Microscope slides, positively charged**
- **Water bath (37°C, 98°C)**
- **Hot plate or hybridizer**
- **Hybridizer or humidity chamber in hybridization oven**
- **Adjustable pipettes (10 µl, 25 µl)**
- **Staining jars or baths**
- **Timer**
- **Calibrated thermometer**
- **Ethanol or reagent alcohol**
- **Xylene**
- **Deionized or distilled water**
- **Coverslips (22 mm x 22 mm, 24 mm x 60 mm)**
- **Rubber cement, e.g., Fixogum Rubber Cement**
- **Adequately maintained fluorescence microscope (400-1000x)**
- **Immersion oil approved for fluorescence microscopy**
- **Appropriate filter sets**
6. Storage and handling

Store at 2-8°C in an upright position protected from light. Use protected from light. Return to storage conditions immediately after use. Do not use reagents beyond expiration date indicated on the label. The device is stable until expiration date indicated on the label when handled accordingly.

7. Warnings and precautions

- Read the instruction for use prior to use!
- Do not use the reagents after the expiry date has been reached!
- This product contains substances (in low concentrations and volumes) that are harmful to health and potentially infectious. Avoid any direct contact with the reagents. Take appropriate protective measures (use disposable gloves, protective glasses, and lab garments!)
- If reagents come into contact with skin, rinse skin immediately with copious quantities of water!
- A material safety data sheet is available on request for the professional user.
- Do not reuse reagents.
- Avoid cross-contamination of samples as this may lead to erroneous results.
- The probe should not be exposed to light, especially strong light, for a longer period of time, i.e. all steps should be accomplished, where possible, in the dark and/or using lightproof containers!

Hazards and precaution statements:

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H351</td>
<td>Suspected of causing cancer.</td>
</tr>
<tr>
<td>H360FD</td>
<td>May damage fertility. May damage the unborn child.</td>
</tr>
<tr>
<td>H373</td>
<td>May cause damage to organs through prolonged or repeated exposure.</td>
</tr>
<tr>
<td>P201</td>
<td>Obtain special instructions before use.</td>
</tr>
<tr>
<td>P202</td>
<td>Do not handle until all safety precautions have been read and understood.</td>
</tr>
<tr>
<td>P260</td>
<td>Do not breathe dust/fume/gas/mist/vapours/spray.</td>
</tr>
<tr>
<td>P280</td>
<td>Wear protective gloves/protective clothing/eye protection/face protection.</td>
</tr>
<tr>
<td>P308+P313</td>
<td>If exposed or concerned: Get medical advice/attention.</td>
</tr>
<tr>
<td>P405</td>
<td>Store locked up.</td>
</tr>
</tbody>
</table>

8. Limitations

- For in vitro diagnostic use.
- For professional use only.
- The clinical interpretation of any positive staining, or its absence, must be done within the context of clinical history, morphology, other histopathological criteria as well as other diagnostic tests. It is the responsibility of a qualified pathologist to be familiar with the FISH probes, reagents, diagnostic panels, and methods used to produce the stained preparation. Staining must be performed in a certified, licensed laboratory under the supervision of a pathologist who is responsible for reviewing the stained slides and assuring the adequacy of positive and negative controls.
- Specimen staining, especially signal intensity and background staining, is dependent on the handling and processing of the specimen prior to staining. Improper fixation, freezing, thawing, washing, drying, heating, sectioning, or contamination with other specimens or fluids may produce artefacts or false results. Inconsistent results may result from variations in fixation and embedding methods, as well as from inherent irregularities within the specimen.
- The probe should be used only for detecting loci described in 4. “Reagents provided”.
- The performance was validated using the procedures described in this instruction for use. Modifications to these procedures might alter the performance and have to be validated by the user.

9. Interfering substances

Red blood cells present in the specimen might exhibit autofluorescence which hinders signal recognition.

The following fixatives are incompatible with ISH:

- Bouin’s fixative
- B5 fixative
- Acidic fixatives (e.g., picric acid)
- Zenker’s fixative
- Alcohols (when used alone)
- Mercuric chloride
- Formaldehyde/zinc fixative
- Hollande’s fixative
- Non-buffered formalin

10. Preparation of specimens

Prepare specimens as described in the instructions for use of the ZytoLight FISH-Tissue Implementation Kit.

11. Preparatory treatment of the device

The product is ready-to-use. No reconstitution, mixing, or dilution is required. Bring probe to room temperature (18-25°C) before use, protect from light. Prior to opening the vial, mix by vortexing and spin down briefly.

12. Assay procedure

Specimen pretreatment

Perform specimen pretreatment (dewaxing, proteolysis) according to the instructions for use of the ZytoLight FISH-Tissue Implementation Kit.

Denaturation and hybridization

1. Pipette 10 µl of the probe onto each pretreated specimen.
2. Cover specimens with a 22 mm x 22 mm coverslip (avoid trapped bubbles) and seal the coverslip.
 We recommend using rubber cement (e.g., Fixogum) for sealing.
3. Place slides on a hot plate or hybridizer and denature specimens for 10 min at 75°C.
4. Transfer the slide to a humidity chamber and hybridize overnight at 37°C (e.g. in a hybridization oven).
 It is essential that specimens do not dry out during the hybridization step.

Post-hybridization

Perform post-hybridization processing (washing, counter-staining, fluorescence microscopy) according to the instructions for use of the ZytoLight FISH-Tissue Implementation Kit.
13. Interpretation of results

With the use of appropriate filter sets, the hybridization signals of the probe appear green (proximal to the IRF4,DUSP22 gene region) and orange (distal to the IRF4,DUSP22 gene region).

Normal situation: In interphases of normal cells or cells without a translocation involving the 6p25.3 band, two green/orange fusion signals appear (see Fig. 2).

Aberrant situation: One 6p25.3 locus affected by a translocation is indicated by one separate green signal and one separate orange signal (see Fig. 2).

Overlapping signals may appear as yellow signals.

Other signal distribution may be observed in some abnormal samples which might result in different signal patterns than described above, indicating variant rearrangements. Unexpected signal patterns should be further investigated.

Please note:
- Due to decondensed chromatin, single FISH signals can appear as small signal clusters. Thus, two or three signals of the same size, separated by a distance ≤ 1 signal diameter, should be counted as one signal.
- Do not evaluate overlapping nuclei.
- Do not count over-digested nuclei (recognized by dark areas visible inside of the nuclei).
- Do not count nuclei with strong auto-fluorescence, which hinders signal recognition.
- A negative or unspecific result can be caused by multiple factors (see chapter 17).
- In order to correctly interpret the results, the user must validate this product prior to use in diagnostic procedures according to national and/or international guidelines.

14. Recommended quality control procedures

In order to monitor correct performance of processed specimens and test reagents, each assay should be accompanied by internal and external controls. If internal and/or external controls fail to demonstrate appropriate staining, results with patient specimens must be considered invalid.

Internal control: Non-neoplastic cells within the specimen that exhibit normal signal pattern, e.g., fibroblasts.

External control: Validated positive and negative control specimens.

15. Performance characteristics

Accuracy: The location of hybridization of the probe was evaluated on metaphase spreads of a karyotypically normal male. In all tested specimens the probe hybridized solely to the expected loci. Therefore, the accuracy was calculated to be 100%.

Analytical sensitivity: For the analytical sensitivity assessment, the probe was evaluated on metaphase spreads of karyotypically normal males. In all tested specimens, all signals hybridized solely to the expected target loci and no other loci. Therefore, the analytical specificity was calculated to be 100%.

16. Disposal

The disposal of reagents must be carried out in accordance with local regulations.

17. Troubleshooting

Any deviation from the operating instructions can lead to inferior staining results or to no staining at all.

<table>
<thead>
<tr>
<th>Weak signals or no signals at all</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No target sequences available</td>
<td>Use appropriate controls</td>
<td></td>
</tr>
<tr>
<td>Cell or tissue sample has not been properly fixed</td>
<td>Optimize fixation time and fixative or apply a post-fixation step as described in "assay procedure" of the manual of the ZytoLight FISH Tissue Implementation Kit</td>
<td></td>
</tr>
<tr>
<td>Heat pretreatment, hybridization, proteolysis, denaturation, or stringentity wash temperature not correct</td>
<td>Check temperature of all technical devices used, using a calibrated thermometer</td>
<td></td>
</tr>
<tr>
<td>Proteolytic pretreatment not carried out properly</td>
<td>Optimize pepsin incubation time, increase or decrease if necessary</td>
<td></td>
</tr>
<tr>
<td>Probe evaporation</td>
<td>When using a hybridizer, the use of the wet stripes/water filled tanks is mandatory. When using a hybridization oven, the use of a humidity chamber is required. In addition, the coverslip should be sealed completely, e.g., with Fixogum, to prevent drying-out of the sample during hybridization.</td>
<td></td>
</tr>
<tr>
<td>Too low concentrated stringency wash buffer</td>
<td>Check concentration of stringency wash buffer</td>
<td></td>
</tr>
<tr>
<td>Old dehydration solutions</td>
<td>Prepare fresh dehydration solutions</td>
<td></td>
</tr>
<tr>
<td>Fluorescence microscope wrongly adjusted</td>
<td>Adjust correctly</td>
<td></td>
</tr>
<tr>
<td>Inappropriate filter sets used</td>
<td>Use filter sets appropriate for the fluorochromes of the probe. Triple-bandpass filter sets provide less light compared to single or dual-bandpass filter sets. Consequently, the signals may appear fainter using these triple-bandpass filter sets.</td>
<td></td>
</tr>
<tr>
<td>Too strong beam of light while handling probes/slides</td>
<td>Accomplish hybridization and washing steps in the dark</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross hybridization signals; noisy background</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete dewaxing</td>
<td>Use fresh solutions; check duration of dewaxing</td>
<td></td>
</tr>
<tr>
<td>Proteolytic pretreatment too strong</td>
<td>Optimize pepsin incubation time</td>
<td></td>
</tr>
<tr>
<td>Probe volume per area too high</td>
<td>Reduce probe volume per section/area, distribute probe dropwise to avoid local concentration</td>
<td></td>
</tr>
<tr>
<td>Slides cooled to room temperature before hybridization</td>
<td>Transfer the slides quickly to 37°C</td>
<td></td>
</tr>
<tr>
<td>Too high concentrated stringency wash buffer</td>
<td>Check concentration of stringency wash buffer</td>
<td></td>
</tr>
<tr>
<td>Washing temperature following hybridization too low</td>
<td>Check temperature; increase if necessary</td>
<td></td>
</tr>
<tr>
<td>Dehydration of sections between the individual incubation steps</td>
<td>Prevent dehydration by sealing the slides and performing incubation in humid environment</td>
<td></td>
</tr>
</tbody>
</table>
Overlapping signals

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inappropriate thickness of tissue sections</td>
<td>Prepare 2-4 μm microtome sections</td>
</tr>
</tbody>
</table>

Morphology degraded

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell or tissue sample has not been properly fixed</td>
<td>Optimize fixing time and fixative or apply a post-fixation step as described in (“assay procedure”) of the manual of the ZytoLight FISH - Tissue Implementation Kit</td>
</tr>
<tr>
<td>Proteolytic pretreatment not carried out properly</td>
<td>Optimize pepsin incubation time</td>
</tr>
<tr>
<td>Insufficient drying before probe application</td>
<td>Extend air-drying</td>
</tr>
</tbody>
</table>

Specimen floats off the slide

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsuitable slide coating</td>
<td>Use appropriate (positively charged) slides</td>
</tr>
<tr>
<td>Proteolytic pretreatment too strong</td>
<td>Shorten pepsin incubation time</td>
</tr>
</tbody>
</table>

Weak counterstain

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low concentrated DAPI</td>
<td>Use DAPI/DuraTect-Solution (ultra) (Prod. No. MT-0008-0.8) instead</td>
</tr>
<tr>
<td>DAPI incubation time too short</td>
<td>Adjust DAPI incubation time</td>
</tr>
</tbody>
</table>

Literature

Trademarks:

ZytoVision® and ZytoLight® are trademarks of ZytoVision GmbH.